D.R. (1974). Metabolic and pharmacokinetic study of bucloxic acid. Arzneim-Forsch., (Drug. Res.), 24, 1385-1389.

ZACCHEI, A.G., WISHOUSKY, T.I. & WATSON L.S. (1978).

The physiological disposition of (2-cyclopentyl-6,7-dichloro-2-methyl-1-oxo-5-indanyloxy) acetic acid in the rat, dog, rhesus monkey and baboon. *Drug Metah. Disp.*, 6, 313–320.

Induction by phenobarbitone or 3-methylcholanthrene of the hepatic microsomal metabolism of harmine

M.D. BURKE & D.J. TWEEDIE (introduced by H.E. BARBER)

Department of Pharmacology, Marischal College, University of Aberdeen.

Harmine is a monoamine oxidase inhibitor, which undergoes extensive metabolism, through O-demethylation to harmol (Slotkin & Distefano, 1970; Burke & Upshall, 1976). We have investigated the metabolism of harmine by hepatic microsomal suspensions in vitro, as part of a study of the metabolism of tricyclic drugs by different forms of cytochrome P-450. Apparently different forms of hepatic microsomal cytochrome P-450, showing different substrate specificities, are induced by pretreatment of animals with either phenobarbitone (PB) or 3-methylcholanthrene (MC) in vivo (Lu, Levin, West, Jacobson, Ryan, Kuntzman & Conney, 1973; Burke & Mayer, 1975).

Adult (20-25 g), male C57/BL strain mice were used, either untreated (control group) or pretreated with PB or MC. Liver microsome suspensions were prepared and incubated with harmine, under conditions suitable for cytochrome P-450-mediated mixed function oxidation. A differential extraction assay was developed for the separation of harmine and harmol and their subsequent fluorimetric measurement. The rates listed below are mean initial reaction rates for 5 mice.

The rate of total metabolism of harmine (100 μM) was faster with liver microsomes of MC-treated mice (18 nmol min⁻¹ mg protein⁻¹) than with liver microsomes of either control or PB-treated mice (4 and 8 nmol min⁻¹ mg protein⁻¹ respectively). Harmol was the major metabolite with liver microsomes of

control mice and seemingly the sole metabolite with PB-treated mice, but it was only a minor metabolite with MC-treated mice. (The rates of harmol production were approximately 50%, 100% and 10% of the rates of harmine degradation with control, PB-treated and MC-treated mice respectively. This could be partly due to extensive further microsomal metabolism of harmol itself, which occurred with MCtreated mice (6 nmol min⁻¹ mg protein⁻¹ at 25 µM harmol) but not with control or PB-treated mice (0.3 and 1.0 nmol min⁻¹ mg protein⁻¹ respectively). It could also be partly due to the apparent induction by MC of an alternative pathway for microsomal metabolism of harmine. A yellow product, which was not a further metabolite of harmol, was formed by the metabolism of harmine with liver microsomes of MC-treated mice, but it was not detected with microsomes of control mice and only barely detectable with microsomes of PB-treated mice.

References

Burke, M.D. & Mayer, R.T. (1975). Inherent specificities of purified cytochromes P-450 and P-448 toward biphenyl hydroxylation and ethoxyresorufin deethylation. *Drug Metab. Disposition*, 3, 245-253.

Burke, M.D. & Upshall, D.G. (1976). Species and phenobarbitone-induced differences in the kinetic constants of liver microsomal harmine O-demethylation. *Xenobiotica*, 6, 321-328.

Lu, A.Y.H., Levin, W., West, S.B., Jacobson, M., Ryan, D., Kuntzman, R. & Conney, A.H. (1973). Reconstituted liver microsomal enzyme system that hydroxylates drugs, other foreign compounds and endogenous substrates. J. Biol. Chem., 248, 456-460.

SLOTKIN, T. & DISTEFANO, V. (1970). A model of harmine metabolism in the rat. J. Pharmac. exp. Ther., 174, 456-462.

The relative inducing potency of antiepileptic drugs in mice

SUSAN BOOBIS & NIRMALA PERSAUD

Department of Clinical Pharmacology, St. Bartholomew's Hospital, London EC1A 7BE.